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Abstract We investigate the general relativistic magnetohydrodynamic (GRMHD) equa-
tions for cold plasma around the Reissner-Nordström black hole. Applying 3 + 1 spacetime
split we linearize the perturbed equations for non-magnetized/magnetized plasma in both ro-
tating and non-rotating background. By Fourier analyze we then derive dispersion relations
and investigate the existence of waves with positive angular frequency in the vicinity of the
black hole horizon. The analysis finds propagation of negative phase and group velocities
for rotating magnetized surroundings.

Keywords Near-horizon-magnetohydrodynamics · Cold plasmas · 3 + 1 formalism ·
Rindler coordinates

1 Introduction

Black holes, the most simple predictions of the general relativity, are one of the most enig-
matic constructs in the present day physics. They draw physicists’ attention as the paradig-
matic objects to test possible quantum theories of gravity. Although still there is no con-
vincing observational data in favor of conclusively proving the existence of black holes in
the universe, there exist certainly sufficient evidences that make the study of such objects
and the effects on their environment a matter of great importance to astrophysics. However,
black holes are not objects of direct observing, so we must have to observe them indirectly
through the effects they exert on their environment. They will greatly affect the surround-
ing plasma medium (which is highly magnetized) with their enormous gravitational fields,
and hence, plasma physics in the vicinity of a black hole has become a subject of obvious
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interest in astrophysics. In the immediate vicinity of a black hole general relativity applies.
It is therefore of interest to formulate plasma physics problems in the context of general
relativity.

The energy flux carried out by black holes (or compact stars) produces a relatively large
magnetic field. The study of stationary configurations and dynamic evolution of conducting
fluid in a magnetosphere of massive black holes demands the theory of general relativistic
magnetohydrodynamics (GRMHD). The equations of GRMHD theory describe the aspects
of interaction of relativistic gravity with plasma’s magnetic field. The study of plasmas in
the black hole environment is important because a successful study of waves will be of great
value in aiding the observational identification of black hole candidates.

An isolated black hole can have an electromagnetic field, if it is endowed with a net
electric charge [1–4]. Since a collapsed object can have a very strong effect on an electro-
magnetic field, it is of interest to determine this effect using GRMHD equations when a
black hole is placed in an external electromagnetic field.

A covariant formulation of the theory based on the fluid equations in curved spacetime
has so far proved unproductive because of the curvature of four-dimensional spacetime in
the region surrounding a black hole. The 3 + 1 formulation of general relativity, developed
by Thorne et al. [5–7], provides a method in which the electromagnetic equations and the
plasma physics at least look somewhat similar to the usual formulations in flat spacetime
while taking accurate account of general relativistic effects such as curvature.

In 3 + 1 formalism of Thorne, Price, and Macdonald (TPM) [8], work connected with
black holes has been facilitated by the replacement of the hole’s event horizon with a mem-
brane endowed with electric charge, electrical conductivity, and finite temperature and en-
tropy. Mathematically the membrane paradigm is analogous to the standard, full general
relativistic theory of black holes so far as physics outside the event horizon is concerned,
and moreover, the formulation of all physics in this region turns out to be very much simpler
than it would be using the standard covariant approach of general relativity.

The pioneer work of 3 + 1 spacetime split, called ADM (Arnowitt, Deser, and Misner)
formalism, was done in 1962 [9] to study the quantization of the gravitational field. Since
then, their formulation has most been applied in studying numerical relativity [10]. TPM
extended the ADM formalism to include electromagnetism and applied it to study elec-
tromagnetic effects near the Kerr black hole. As a result, their work has opened up many
possibilities for studying electromagnetic effects on plasmas in the black hole environment.

In recent years there have been attempts to exploit the 3 + 1 formalism. Zhang [11, 12]
considered the case of perfect GRMHD waves in the vicinity of Kerr black hole and dis-
cussed the linearized waves for the cold (negligible particle pressure) plasma propagating
in two-dimensions. Holcomb and Tajima [13], Holcomb [14], and Dettmann et al. [15] in-
vestigated some properties of wave propagation in the Friedmann universe. Khanna [16]
derived the GRMHD equations for two-fluid plasma in Kerr black hole. Antón et al. [17]
investigated various test simulations and discussed magneto-rotational instability of accre-
tion disks. Anile [18] worked on relativistic shocks/simple waves in magneto-fluids in cold
relativistic plasma. Komissarov [19] discussed the Blandford-Znajek monopole solution in
black hole electrodynamics. Buzzi et al. [20, 21] described a general relativistic version
of two-fluid plasma physics in TPM formulation and developed a linearized treatment of
plasma waves in analogy with the special relativistic formulation of Sakai and Kawata [22].
They also investigated the one dimensional radial propagation of transverse and longitudinal
waves near the Schwarzschild black hole.

Recently, Sharif and Sheikh [23] investigated cold plasma in the vicinity of the Schwarz-
schild black hole horizon by using 3 + 1 formalism of the GRMHD equations and described
the dispersion relation.
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In this paper we apply TPM formalism of the GRMHD equations to study the dynamical
magnetosphere of the Reissner-Nordström (RN) spacetime, which is the solution of the cou-
pled Einstein-Maxwell equations and describes a spherically symmetric black hole endowed
with electric or magnetic charge. The RN solution is important due to its intrinsic interest
[24, 25] specifically in the context of its recent applications in Hawking radiation [26–29]. If
the horizon is sufficiently small, the magnetically charged RN solution develops a classical
instability in the context of spontaneously broken gauge theories, which has significant im-
plications for the evolution of a magnetically charged black hole [30]. It leads, in particular,
to the possibility of evaporating a black hole completely, leaving in its place a nonsingular
magnetic monopole. The magnetic monopole hypothesis was propounded by Dirac [31, 32]
relatively long ago. The ingenious suggestion by Dirac that magnetic monopole does exist
in nature was neglected due to the failure to detect such a particle. However, in recent years
the development of gauge theories has shed new light on it. Moreover, in asymptotically
flat space, the extremal RN black holes hold an important and controversial status in black
hole physics. Usually, these black holes were supposed to be a limiting case of non-extremal
black holes [33]. This conventional view was challenged in [34] on the basis of the fact that
the topology of the extremal and non-extremal black holes have qualitative differences. On
the basis of these differences, it was argued that extremal RN black holes have zero entropy
with no definite temperature in spite of having a nonzero horizon area [34, 35]. The extremal
RN black holes are also important in the context of supergravity theories [36–38]. As shown
in [39], an exact solution of these black holes exists in (super)string theory. Thus aspects of
the RN solution must be of interest in a broader contest. In view of this reason, our study of
cold plasma in the environment close to the event horizon of the RN black hole is interest-
ing. The result we have obtained reduces to that of the Schwarzschild black hole [23] when
the charge term vanishes.

This paper is arranged as follows. In Sect. 2, we summarize the GRMHD equations in the
RN black hole magnetosphere in 3 + 1 formalism. We investigate the GRMHD equations
for cold plasma in the case of rotating magnetized background in Sect. 3. In Sect. 4, we
present our study of non-magnetized plasma in rotating background. We investigate the
dispersion relations for the non-rotating background in Sect. 5. Finally, in Sect. 6 we present
our remarks. We use natural units: G = c = 1.

2 3 + 1 Formulation of GRMHD Equations Around RN Black Holes

The 3 + 1 formulation of general relativity is based on the concept of selecting a preferred
set of spacelike hypersurfaces which form the level surfaces of a congruence of timelike
curves. The choice of a particular set of these hypersurfaces constitutes a time slicing of
spacetime. The hypersurfaces considered here are of constant universal time t .

In TPM notation, the metric of the Reissner-Nordström (RN) black hole with magnetic
charges [40, 41] is given by

ds2 = gμνdxμdxν = −f dt2 + dr2

f
+ r2(dθ2 + sin2 θdϕ2),

f (r) = 1 − 2M

r
+ Q2

r2
, Q2 = Q2

e + Q2
m.

(1)

The components xμ denote spacetime coordinates and μ,ν = 0,1,2,3. The vector po-
tential of the dually charged RN black hole has non-vanishing components: At = Qe/r ,
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Aϕ = −Qm cos θ , with corresponding field strength: F01 = Qe/r2, F23 = Qm/r2, describ-
ing electric charge Qe and magnetic charge Qm.

The metric (1) describes: (i) the Schwarzschild black hole for Q = 0; (ii) the magnetically
charged Reissner-Nordström black hole [30] for Qe = 0, 0 < Qm < M ; (iii) the generic
Reissner-Nordström black hole for Qm = 0, 0 < Qe < M ; and (iv) the extremal Reissner-
Nordström black hole for Q = M .

According to the null hypersurface equation, the metric function f (r) can yield an event
horizon at r = r+ and an Cauchy (inner) horizon at r = r−, where

r± = M ±
√

M2 − Q2. (2)

The curvature singularity at r = 0 is hidden behind these horizons for Q < M , while for
Q > M the metric (1) does not describe a black hole at all but rather a physically forbidden
naked singularity, as no real value is found in (2). The mass parameter M of the RN solution
is inseparably connected with the charge parameter Q [42]. This means that M = 0 only
when Q = 0.

When Q = 0, r+ = 2M is the usual Schwarzschild horizon. In the extremal case of Q =
M , the two values r± coincide and the horizon becomes degenerate. The extremal spacetime
is just the flat space vacuum for Q = 0. An M > Q black hole will tend to Hawking radiate
down to its extremal M = Q state. The Hawking temperature [43]

TH =
√

M2 − Q2

2π(M + √
M2 − Q2)2

(3)

vanishes as the black hole attains its extremal limit. Thus the extremal black hole is typi-
cally quantum mechanically as well as classically a stable object. However, this is not true
for extremal electrically charged black holes in our world [44]. The extremal black hole is
quantum ground state of the charge Q superselection sector of the Hilbert space. This view
is reinforced by the N = 2 supersymmetric version of the theory.

The hypersurfaces of constant universal time t define an absolute three-dimensional
space described by the metric ds2 = gij dxidxj , where the indices i, j, refer to coordinates
in absolute space and range over 1, 2, 3. The fiducial observers (FIDOs), i.e. the observers
remaining at rest with respect to this absolute space, measure their proper time τ using
clocks that they carry with them and make local measurements of physical quantities. Then
all their measured quantities, such as velocities V and fields B and E are defined as FIDO lo-
cally measured quantities and all rates as measured by the FIDOs are measured using FIDO
proper time. In making these measurements the FIDOs use a local Cartesian coordinate
system that has basis vectors of unit length tangent to the coordinate lines:

er̂ = √
f

∂

∂r
, eθ̂ = 1

r

∂

∂θ
, eϕ̂ = 1

r sin θ

∂

∂ϕ
. (4)

The ratio of the rate of FIDO proper time to that of universal time is defined in terms of
redshift factor:

α(r) ≡ dτ

dt
=

√

1 − 2M

r
+ Q2

r2
, (5)

called the lapse function. It measures the amount of FIDO proper time elapsed during the
passage of a unit amount of universal time.
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If a spacetime viewpoint is considered rather than a 3 + 1 split of spacetime, the set of
orthonormal vectors also includes the basis vector for the time coordinate given by

e0̂ = d

dτ
= 1

α

∂

∂t
. (6)

The FIDO proper time τ acts as a local laboratory time, where the FIDOs have the role of
“local laboratories”. It does not provide a slicing of spacetime as it is not a global coordinate.
The RN time coordinate t is the logical choice to satisfy this role and in fact slices space-
time in the way that the FIDOs would do physically. All subsequent equations are therefore
expressed in terms of the universal time coordinate t rather than the FIDO proper time τ .

The lapse function α acts as a gravitational potential and governs the ticking rates of
clocks and redshifts as well. It also measures the gravitational acceleration felt by a FIDO:

a = ∇ lnα = 1

α

(
M

r2
− Q2

r3

)
er̂ . (7)

The rate of change of any scalar physical quantity or any three-dimensional vector or tensor,
as measured by a FIDO, is defined by the convective derivative

D

Dτ
≡

(
1

α

∂

∂t
+ V · ∇

)
, (8)

where V is the velocity of a fluid as measured locally by a FIDO.
The Rindler coordinate system, in which space is locally Cartesian, provides a good

approximation to the RN metric near the event horizon. However, the essential features of
the horizon and the 3 + 1 split are retained without the complication of explicitly curved
spatial three-geometries. The RN metric is approximated in Rindler coordinates by

ds2 = −α2dt2 + dx2 + dy2 + dz2, (9)

where

x = r+
(
θ − π

2

)
, y = r+ϕ, z = 2r+α. (10)

The standard lapse function is again denoted by α and simplifies in Rindler coordinates to
z/(2r+) , where r+ is the location of the event horizon of the RN black hole. This function
vanishes at the horizon which we can place at z = 0 and it increases monotonically as z

increases from 0 to ∞.
Maxwell’s equations in 3 + 1 formalism take the following form:

∇ · B = 0, (11)

∇ · E = 4πρe, (12)

∂B
∂t

= −∇ × (αE), (13)

∂E
∂t

= ∇ × (αB) − 4παj, (14)

where ρe and j are electric charge and current density, respectively. For the perfect MHD
(i.e., MHD with perfectly conducting) assumption there exists no electric field in the fluid’s
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rest frame, i.e., E + V × B = 0. Under this condition the equation for the evolution of mag-
netic field (13) becomes

∂B
∂t

= ∇ × (αV × B). (15)

The conservation of mass and momentum equations are written, respectively, as fol-
lows [11]:

∂(ρoμ)

∂t
+ {(αV) · ∇}(ρoμ)

+ ρoμγ 2V · ∂V
∂t

+ ρoμγ 2V · (αV · ∇)V + ρoμ{∇ · (αV)} = 0, (16)

{(
ρoμγ 2 + B2

4π

)
δij + ρoμγ 4ViVj − 1

4π
BiBj

}(
1

α

∂

∂t
+ V · ∇

)
V j

+ ρoγ
2Vi

(
1

α

∂

∂t
+ V · ∇

)
μ −

(
B2

4π
δij − 1

4π
BiBj

)
V j

,kV
k

= −ρoμγ 2ai − p,i + 1

4π
(V × B)i∇ · (V × B) − 1

8πα2
(αB)2

,i

+ 1

4πα
(αBi),jB

j − 1

4πα
[B × {V × (∇ × (αV × B))}]i , (17)

where a subscript i on a vector quantity refers to the i-component of that vector. The μ ≡
(ρ + p)/ρo is the specific enthalpy of the fluid, where ρ is the total density of mass-energy
and p, the pressure as seen in the fluid’s rest frame. The ρo is the fluid’s rest-mass density
and γ ≡ (1−V2)−1/2 is the fluid’s Lorentz factor as seen by the FIDOs. Equations (15)–(17)
are the perfect GRMHD equations for the RN black hole.

We assume for simplicity that the plasma has vanishing thermal pressure and vanishing
thermal energy density; that is, we restrict our investigation to a “cold plasma,” for which
we consider that the total density of mass-energy ρ remains the same as the rest-mass den-
sity ρo:

p = 0, ρ = ρo, and μ = p + ρ

ρo

= 1. (18)

Now using (18) in (15)–(17) we obtain the perfect GRMHD equations for cold plasma near
to the event horizon of RN black hole.

We characterize the perturbed flow in the magnetosphere by its velocity V and magnetic
field B as measured by the FIDOs, and the fluid’s density ρ. The first order perturbations in
these quantities are denoted by δV, δB and δρ. Accordingly, the perturbed variables take the
following form:

B = Bo + δB, V = Vo + δV, ρ = ρo + δρ, (19)

where Bo, Vo and ρo are unperturbed quantities. The waves can propagate in z-direction due
to gravitation with respect to time t and thus perturbed quantities must depend on z and t .
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3 Cold Plasma in Rotating Magnetized Background

We use the linear perturbation and Fourier analyze techniques to reduce GRMHD equations
to ordinary differential equations. The magnetosphere has the perturbed flow along x-z plane
in this background. The FIDO-measured fluid four-velocity can be described in this plane by

V = V (z)ex + u(z)ez, (20)

while the Lorentz factor γ takes the form

γ = 1√
1 − u2 − V 2

. (21)

The rotating magnetic field can be expressed in the x-z plane as

B = B[λ(z)ex + ez]. (22)

The variables λ , u and V are related by

V = VF

α
+ λu, (23)

where VF is an integration constant.
We use the following perturbation quantities

ρ̃ ≡ δρ/ρ = ρ̃(t, z), v ≡ δV = vx(t, z)ex + vz(t, z)ez,

b ≡ δB
B

= bx(t, z)ex + bz(t, z)ez,
(24)

with

ρ̃(t, z) = c1e
−i(ωt−kz), vz(t, z) = c2e

−i(ωt−kz), vx(t, z) = c3e
−i(ωt−kz),

bx(t, z) = c4e
−i(ωt−kz), bz(t, z) = c5e

−i(ωt−kz),
(25)

where cs , s = 1, . . . ,5, are arbitrary constants.
Using (24) in (15)–(17), we obtain

∂(δB)

∂t
= ∇ × (αv × B) + ∇ × (αV × δB), (26)

∇ · (δB) = 0, (27)

(
1

α

∂

∂t
+ V · ∇

)
δρ + ργ 2V ·

(
1

α

∂

∂t
+ V · ∇

)
v − δρ

ρ
(V · ∇)ρ + ρ(∇ · v)

= −2ργ 2(V · v)(V · ∇)lnγ − ργ 2(V · ∇V) · v + ρ(v · ∇ lnu), (28)

{(
ργ 2 + B2

4π

)
δij + ργ 4ViVj − 1

4π
BiBj

}
1

α

∂vj

∂t
+ 1

4π

[
B ×

{
V × 1

α

∂(δB)

∂t

}]

i

+ ργ 2vi,jV
j + ργ 4vj,kViV

jV k − 1

4πα
{(αδBi),j − (αδBj ),i}Bj
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= −γ 2{δρ + 2ργ 2(V · v)}ai + 1

4πα
{(αBi),j − (αBj ),i}δBj

− ργ 4(viV
j + vjVi)Vk,jV

k − γ 2{δρV j + 2ργ 2(V · v)V j + ρvj }Vi,j

− γ 4Vi{δρV j + 4ργ 2(V · v)V j + ρvj }Vj,kV
k. (29)

The component form of (26)–(29) can be written as follows:

1

α

∂bx

∂t
+ ubx,z = ∇ lnα(vx − λvz + V bz − ubx)

+ (vx,z − λvz,z − λ′vz + V ′bz − u′bx), (30)

1

α

∂bz

∂t
+ ubz,z = 0, (31)

bz,z = 0, (32)

1

α

∂ρ̃

∂t
+ uρ̃,z + γ 2V

(
1

α

∂vx

∂t
+ uvx,z

)
+ γ 2u

1

α

∂vz

∂t
+ (1 + γ 2u2)vz,z

= −γ 2u{(1 + 2γ 2V 2)V ′ + 2γ 2uV u′}vx

+
{
(1 − 2γ 2u2)(1 + γ 2u2)

u′

u
− 2γ 4u2V V ′

}
vz, (33)

{

ργ 2(1 + γ 2V 2) + B2

4π

}
1

α

∂vx

∂t
+

(

ργ 4uV − λB2

4π

)
1

α

∂vz

∂t

+
{

ργ 2(1 + γ 2V 2) − B2

4π

}

uvx,z +
(

ργ 4uV + λB2

4π

)

uvz,z − B2

4π
(1 − u2)bx,z

− B2

4πα
bx{α′(1 − u2) − αuu′} + ρ̃ργ 2u{(1 + γ 2V 2)V ′ + γ 2uu′V }

+
[

ργ 4u{(1 + 4γ 2V 2)uu′ + 4(1 + γ 2V 2)V V ′} + B2uα′

4πα

]

vx

+
[
ργ 2

[{(1 + 2γ 2u2)(1 + 2γ 2V 2) − γ 2V 2}V ′

+ 2γ 2(1 + 2γ 2u2)uu′V
] + B2u

4πα
(αλ)′

]
vz = 0, (34)

{

ργ 2(1 + γ 2u2) + λ2B2

4π

}
1

α

∂vz

∂t
+

(

ργ 4uV − λB2

4π

)
1

α

∂vx

∂t

+
{

ργ 2(1 + γ 2u2) − λ2B2

4π

}

uvz,z +
(

ργ 4uV + λB2

4π
uvx,z

)

+ λB2

4π
(1 − u2)bx,z + B2

4πα
{(αλ)′ + α′λ − uλ(uα′ + u′α)}bx
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+ ρ̃γ 2[az + u{(1 + γ 2u2)u′ + γ 2uV V ′}]

+
[

ργ 4{u2V ′(1 + 4γ 2V 2) + 2V (az + uu′(1 + 2γ 2u2))} + λB2uα′

4πα

]

vx

+
[
ργ 2{u′(1 + γ 2u2)(1 + 4γ 2u2)

+ 2uγ 2{(1 + 2γ 2u2)V V ′ + az}} − λB2u

4πα
(αλ)′

]
vz = 0. (35)

From the Fourier analyzed of (30)–(35) with (25), we obtain

c3(α
′ + ikα) − c2{(αλ)′ + ikαλ} + c5(αV )′ − c4{(αu)′ − iω + ikαu} = 0, (36)

c5

(
− iω

α
+ iku

)
= 0, (37)

c5ik = 0, (38)

+c1

(
− iω

α
+ iku

)
+ c2

{
− iω

α
γ 2u + ik(1 + γ 2u2)

− (1 − 2γ 2u2)(1 + γ 2u2)
u′

u
+ 2γ 4u2V V ′

}

+ c3γ
2

[(
− iω

α
+ iku

)
V + u{(1 + 2γ 2V 2)V ′ + 2γ 2uu′V }

]
= 0, (39)

c1ργ 2u{(1 + γ 2V 2)V ′ + γ 2uu′V } − c4
B2

4π

{
(1 − u2)ik + α′

α
(1 − u2) − uu′

}

+ c2

[

−
(

ργ 4uV − λB2

4π

)
iω

α
+ iku

(

ργ 4uV + λB2

4π

)

+ργ 2{(1 + 2γ 2u2)(1 + 2γ 2V 2) − γ 2V 2}V ′

+2ργ 4(1 + 2γ 2u2)uu′V + B2u

4πα
(λα)′

]

+ c3

[

−
{

ργ 2(1 + γ 2V 2) + B2

4π

}
iω

α

+ iku

{

ργ 2(1 + γ 2V 2) − B2

4π

}

+ργ 4u{(1 + 4γ 2V 2)uu′ + 4(1 + γ 2V 2)V V ′} − B2uα′

4πα

]

= 0, (40)

c1ργ 2[az + u{(1 + γ 2u2)u′ + γ 2uV V ′}]

+ c2

[

−
{

ργ 2(1 + γ 2u2) + λ2B2

4π

}
iω

α
+

{

ργ 2(1 + γ 2u2) − λ2B2

4π

}

iku
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+
{

ργ 2{u′(1 + γ 2u2)(1 + 4γ 2u2) + 2uγ 2((1 + 2γ 2u2)V V ′ + az)} − λB2u

4πα
(αλ)′

}]

+ c3

[

−
(

ργ 4uV − λB2

4π

)
iω

α
+ iku

(

ργ 4uV + λB2

4π

)

+
{

ργ 4{u2V ′(1 + 4γ 2V 2) + 2V (az + uu′(1 + 2γ 2u2))} + λB2uα′

4πα

}]

+ B2

4π
c4

[
λ(1 − u2)ik + λ(1 − u2)

α′

α
− λuu′ + (λα)′

α

]
= 0. (41)

Equation (38) implies that c5 is zero which gives that bz is zero. The determinant of the
coefficients of c1, c2, c3 and c4 in (36) and (39)–(41) equated to zero gives a complex relation
in k, called the dispersion relation, which is of the form A(z,ω)k4 +B(z,ω)k3 +C(z,ω)k2 +
D(z,ω)k + E(z,ω) = 0.

Numerical Solution Modes

We investigate the different types of modes of waves when B > 0 and the wave number
is in arbitrary direction to B. We use the lapse function α = z

2r+ (= z

2(M+
√

M2−Q2)
), 0 ≤

Q2/M2 ≤ 1. We consider the black hole mass M ∼ 1M	, Q2/M2 = 0.7, ρ = 1 and B2

4π
= 2.

From the mass conservation law in three-dimensions we get u = 1√
2+z2

. For simplicity, we

also assume that u = V . From (23) we get λ = 1 −
√

2+z2

z
by taking VF = 1, which shows

that the magnetic field diverges close to the horizon.
Using these values in the dispersion relation we get values for k, from which we

have calculated the phase velocity vp ≡ ω
k

and group velocity vg ≡ (n + ω dn
dω

)−1, where
n(= 1/vp) is the refractive index computed as the ratio of the speed of light in a vacuum to
the speed of light through the material and dn

dω
determines whether the dispersion is normal

or not.
The real part of the dispersion relation gives four real values for k, out of which two

are real and interesting. The other two values turn out to be imaginary in the whole region.
One real value for k is obtained out of three values found from imaginary part of dispersion
relation. This is shown by Fig. 3. The two dispersion relations obtained from the real part
are shown in the Figs. 1 and 2.

We see from Fig. 1 that the waves gain energy with the increase in angular frequency but
lose when we move away from the horizon and hence damping arises. But in the vicinity
of the horizon the wave number is very large due to strong gravitational field, so no wave
exists there. The phase and group velocities increase as we depart from the horizon. The
dispersion is not normal there because of refractive index n < 1 though dn

dω
> 0.

The Fig. 2 indicates that the wave number is proportional to angular frequency and in-
versely proportional to z. There exists no wave at the horizon since wave number is infinite
there. The phase and group velocities show the same behavior. We observe the damping
modes as we depart from the event horizon and the growing modes as z decreases. Since
n < 1 and dn

dω
< 0, the wave does not disperse normally there.
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Fig. 1 The region is of non-normal dispersion, phase and group velocities are the same and increasing with
increase of z, dn

dω
> 0 but n < 1

Figure 3 shows that the wave number is very large at the event horizon (z = 0) but it
decreases as we depart from the horizon and also it takes negative value for some values of
z and ω. The phase and group velocities are also negative and the group velocity is greater
than the phase velocity. The value of refractive index n < 1 and dn

dω
< 0 for some values of

z and ω. Therefore the region is of anomalous dispersion and possesses the properties of
metamaterials.



3018 Int J Theor Phys (2009) 48: 3007–3029

Fig. 2 The region is of non-normal dispersion, phase and group velocities are the same, n < 1 and dn
dω

< 0

4 Cold Plasma in Rotating Non-magnetized Background

In non-magnetized background B = 0 i.e. when bx = bz = 0, the GRMHD equations (36)–
(41) reduce to the following form:

c1

(
− iω

α
+ iku

)
+ c2

[
− iω

α
γ 2u+ (1+γ 2u2)ik − (1 − 2γ 2u2)(1+γ 2u2)

u′

u
+2γ 4u2V V ′

]

+ c3γ
2

[
− iω

α
V + ikuV + γ 2u{(1 + 2γ 2V 2)V ′ + 2γ 2uu′V }

]
= 0, (42)
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Fig. 3 The region is of anomalous dispersion, vg > vp , and k, vp, vg are negative, n < 1, dn
dω

< 0. The
medium has the properties of metamaterials

c1γ
2u{(1 + γ 2V 2)V ′ + γ 2uu′V } + c2γ

2

[(
− iω

α
+ iku

)
γ 2uV

+ {(1 + 2γ 2u2)(1 + 2γ 2V 2) − γ 2V 2}V ′ + 2γ 2(1 + 2γ 2u2)uu′V
]

+ c3

[(
− iω

α
+ iku

)
γ 2(1 + γ 2V 2)

+ γ 4u
{
(1 + 4γ 2V 2)uu′ + 4V V ′(1 + γ 2V 2)

}] = 0, (43)
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c1γ
2{az + (1 + γ 2u2)uu′ + γ 2u2V V ′} + c2

[
γ 2(1 + γ 2u2)

(
− iω

α
+ iku

)

+ γ 2{u′(1 + γ 2u2)(1 + 4γ 2u2) + 2uγ 2(az + (1 + 2γ 2u2)V V ′)}
]

+ c3γ
4V

[(
− iω

α
+ iku

)
u + u2(1 + 4γ 2V 2) + 2{az + uu′(1 + 2γ 2u2)}

]
= 0, (44)

where the FIDO-measured fluid four-velocity V, Lorentz factor γ are given by (20) and (21),
respectively. The determinant of the coefficients c1, c2 and c3 in (42)–(44) yields a complex
dispersion relation of the form A(z,ω)k3 + B(z,ω)k2 + C(z,ω)k + D(z,ω) = 0.

To analyze the numerical solution mode we consider Q2/M2 = 0.5 and assume that
V = u and ρ =constant. The mass conservation law gives that u = 1√

z2+2
. From the real

part of the dispersion relation we get only two real values for k which are shown in Figs. 4
and 5. The imaginary part gives only one real root and two complex conjugate roots. Figure 6
shows the real value for k obtained from the imaginary part of the dispersion equation.

We see from Fig. 4 that the wave number is very large close to the event horizon and the
waves lose energy as we move away from the horizon of RN black hole. This shows that the
increase in ω increases k and the waves are in growing mode as z decreases. The phase and
group velocities are of the same pattern and increase as z increases. Since n < 1 and dn

dω
< 0,

the region is not of normal dispersion.
Figure 5 shows that the real waves exist in the region but no wave in the vicinity of the

event horizon because of the existence of strong gravitational field there. The wave number
increases as angular frequency increases but decreases as z increases. The wave number
decreases as we go away from the event horizon and hence damping takes place. For this
region refractive index n < 1 and dn

dω
> 0 which implies that the region is of anomalous

dispersion.
In Fig. 6, infinite wave number occurs at the horizon, so no wave exists there. The phase

and group velocities admit the same pattern. These velocities increase when we depart from
horizon. The region has n < 1 and dn

dω
< 0 for some values of z and ω. Hence it is not the

case of normal dispersion.

5 Cold Plasma in Non-rotating Background

The magnetosphere has the perturbed flow only along z-axis in this background. Hence,
FIDO measured fluid four-velocity V is described by

V = u(z)ez. (45)

The Lorentz factor takes the form

γ = 1√
1 − u2

, (46)

while the FIDO measured magnetic field becomes

B = B(z)ez. (47)
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Fig. 4 The region is of non-normal dispersion, phase and group velocities are the same, n < 1 and dn
dω

< 0

Then (36)–(41) reduce to the following form:

− iω

α
c5 = 0, (48)

ikc5 = 0, (49)

c1

(−iω

α
+ iku

)
+ c2

{
(1 + γ 2u2)ik − (1 − 2γ 2u2)(1 + γ 2u2)

u′

u
− iω

α
γ 2u

}
= 0, (50)
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Fig. 5 The region is not of normal dispersion, phase and group velocities are the same, n < 1 and dn
dω

> 0

c1γ
2{az + uu′(1 + γ 2u2)} + c2

[
γ 2(1 + γ 2u2)

(−iω

α
+ iku

)

+ γ 2{u′(1 + γ 2u2)(1 + 4γ 2u2) + 2uγ 2az}
]

= 0. (51)

From (48) or (49), c5 = 0; hence, there does not exist any perturbation in magnetic field of
the fluid. We also get the same two equations (50) and (51) for the non-magnetized plasma.
The complex dispersion relation, that follows from (50) and (51), is
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Fig. 6 The region is not of normal dispersion, phase and group velocities are the same, n < 1 and dn
dω

< 0 in
some region

u2γ 2(1 + u2γ 2)k2 −
{
iazγ

2(−1 + u2γ 2) + u(1 + u2γ 2)

(
3iu2u′γ 2 + 2ω

α

)}
k

−
[
γ 2

{
u′

u
(az + uu′ + u3u′γ 2)(1 − u2γ 2 − 2u4γ 4)

− i{u′ + u(az + 4uu′)γ 2 + 3u4u′γ 4}ω
α

− (1 + u2γ 2)
ω2

α2

}]
= 0. (52)
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Fig. 7 The region is of normal dispersion, phase and group velocities are the same, n > 1 and dn
dω

> 0

We investigate the longitudinal waves propagating parallel to the magnetic field B. We
analyze the numerical modes for Q2/M2 = 0.5. From the mass conservation law we get
u = 1√

z2+1
. The real part of (52) gives us two values for k in terms of z and ω, shown in

Figs. 7 and 8, while the imaginary part provides one real value for k, shown in Fig. 9.
Figure 7 shows that the wave number k decreases as z increases i.e. the waves are growing

energy with increase in ω and decrease in z but damping occurs when z raises. So waves
drop energy when we depart from event horizon. At the event horizon of the hole, we see
that the wave number becomes infinite which means that the waves disappear due to the
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Fig. 8 The region is not of normal dispersion, phase and group velocities are the same, n > 1 but dn
dω

< 0

effect of immense gravity. The group and phase velocities are same. The refractive index
n > 1 and dn

dω
> 0 in this case. Hence the dispersion is normal.

We observe from Fig. 8 that the wave number is infinite at z = 0 and hence no wave
exists there. The wave number decreases as we depart from the event horizon. The waves
show damping modes for increasing z. The increase in ω increases k. The phase and group
velocities have the same behavior. Since dn

dω
< 0, the region is not of normal dispersion.

Figure 9 shows that the wave number becomes very large and hence there exists no wave
very close to event horizon. The waves are gaining energy with the increase in ω but losing
with the increase in the distance from the event horizon. The surfaces of group and phase
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Fig. 9 The region is not of normal dispersion, phase and group velocities are the same, n < 1 and dn
dω

≤ 0 in
most region

velocities are showing the same nature. Since n < 1 and dn
dω

≤ 0 for most region, so the
region is not of normal dispersion.

6 Concluding Remarks

Our main concern has been the investigation of the wave properties of cold plasmas in the
RN black-hole’s magnetosphere. We have exploited the 3+1 formalism of general relativity,
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developed by Thorne et al. [5–8], and derived the GRMHD equations in component form by
linear perturbation. These equations are then Fourier analyzed to obtain dispersion relations.
We have considered both non-rotating and rotating backgrounds (either non-magnetized or
magnetized). The properties of plasma waves are analyzed on the basis of the quantities:
wave number, phase and group velocities, and refractive index, derived from the dispersion
relations. We solve the dispersion relation numerically and present the results graphically.

Our investigation shows that the wave number becomes infinite at the event horizon and
consequently, no wave is present there due to immense gravitational field. This indicates
that no signal can pass the event horizon or near to it. But when we depart from horizon, the
waves lose energy. Wave number is directly proportional to angular frequency and inversely
proportional to z. Therefore the waves are in damping mode as we go away from the horizon
and in growing mode as we approach the horizon.

For a non-rotating background, the magnetospheric fluid disperses normally. Figure 7
shows the normal dispersion, while Figs. 8 and 9 show dispersions which are not normal.
In the case of a rotating non-magnetized background, shown in Figs. 4, 5, and 6, we have
found cases which are not normally dispersive.

For a rotating magnetized background, we have found a region, shown in Fig. 3, where
wave number, phase velocity, group velocity, refractive index, and dn

dω
are all negative. This

implies that the region has all the characteristics of left-handed metamaterials. The group
velocity is greater than the phase velocity and dn

dω
< 0, which mean that the region is of

anomalous dispersion. The dispersion relations provide that the region under discussion is
of non-normal dispersion. Hence real signals cannot pass through this region.

Our study shows that the wave number becomes infinite at the event horizon and hence
no wave exists there, which supports the well-known point of view that no information
can be extracted from a black hole. Mackay et al. [45] found that rotation of a black hole
is required for the existence of negative phase velocity propagation and the waves of less
angular velocity are evanescent. It is interesting to mention that our analysis shows that
negative phase velocity propagates in the rotating background whether the black hole is
rotating or non-rotating.

The MHD waves are non-dispersive in the cold plasma, but our analysis, shown graph-
ically, predicts that they are dispersive. This happens because of the formalism used and
the equations which are different from the usual MHD equations. Since the 3 + 1 split of
general relativity is used in investigating waves propagating in a plasma influenced by the
gravitational field, internal gravity waves which interrupt the MHD waves imply the cases
of dispersion in each of the hypersurface. The figures of the waves are given in a particular
hypersurface of constant time t but not in the whole RN background. Hence our finding is
justified locally, not globally.

The result, obtained in this paper, reduces to the case of the Schwarzschild black for
Q = 0, as was obtained in [23]. As described in the introduction, the Reissner-Nordström
solution describes several special charged solutions in special cases, such as, (a) the mag-
netically charged solution for Qe = 0, 0 < Qm < M , (b) the generic solution for Qm = 0,
0 < Qe < M , and (c) the extremal solution for Q = M . Thus the result of this study can be
specialized for these interesting solutions by suitably choosing the black hole parameters.
The extreme RN black hole is distinguished by its coldness (vanishing Hawking tempera-
ture) and its supersymmetry. It occupies a special position among the black-hole solutions
to the Einstein or Einstein-Maxwell equations because of its complete stability with respect
to both classical and quantum processes permitting its interpretation as a soliton [46, 47].
The extremal spacetime is also special in admitting supersymmetry in the context of N = 2
supergravity [47–52]. Thus, aspects of the Reissner-Nordström solution might be of interest
in a broader context.
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In view of the above reasons, our study of the dispersion relation for the cold plasma
near the event horizon of the RN black hole is well motivating. The results of this paper
can be extended to the RN spacetime generalized with a cosmological parameter. This type
of extension may be interesting from the point of view of an inflationary scenario of early
universe.
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to SUST, Sylhet, Bangladesh for granting leave during this work.

References

1. Israel, W.: Phys. Rev. 164, 1776 (1967)
2. Israel, W.: Commun. Math. Phys. 8, 245 (1968)
3. Hawking, S.: Commun. Math. Phys. 25, 152 (1972)
4. Robinson, D.: Phys. Rev. D 10, 458 (1974)
5. Thorne, K.S., Macdonald, D.A.: Mon. Not. R. Astron. Soc. 198, 339 (1982)
6. Macdonald, D.A., Thorne, K.S.: Mon. Not. R. Astron. Soc. 198, 345 (1982)
7. Price, R.H., Thorne, K.S.: Phys. Rev. D 33, 915 (1986)
8. Thorne, K.S., Price, R.H., Macdonald, D.A.: Black Holes: The Membrane Paradigm. Yale University

Press, New Haven (1986)
9. Arnowitt, R., Deser, S., Misner, C.W.: In: Witten, L. (ed.) Gravitation: An Introduction to Current Re-

search. Wiley, New York (1962)
10. Evans, C.R., Smarr, L.L., Wilson, J.R.: In: Norman, M., Winkler, K.H. (eds.) Astrophysical Radiation

Hydrodynamics. Reidel, Dordrecht (1986)
11. Zhang, X.-H.: Phys. Rev. D 39, 2933 (1989)
12. Zhang, X.-H.: Phys. Rev. D 40, 3858 (1989)
13. Holcomb, K.A., Tajima, T.: Phys. Rev. D 40, 3809 (1989)
14. Holcomb, K.A.: Astrophys. J. 362, 381 (1990)
15. Dettman, C.P., Frankel, N.E., Kowalenko, V.: Phys. Rev. D 48, 5655 (1993)
16. Khanna, R.: Mon. Not. R. Astron. Soc. 294, 673 (1998)
17. Antón, L., Zanotti, O., Miralles, J.A., Martí, J.A., Ibáñez, J., Font, J.A., Pons, J.A.: Astrophys. J. 637,

296 (2006)
18. Anile, A.M.: Relativistic Fluids and Magneto-Fluids with Applications in Astrophysics and Plasma

Physics. Cambridge University Press, Cambridge (1989)
19. Komissarov, S.S.: Mon. Not. R. Astron. Soc. 336, 759 (2002)
20. Buzzi, V., Hines, K.C., Treumann, R.A.: Phys. Rev. D 51, 6663 (1995)
21. Buzzi, V., Hines, K.C., Treumann, R.A.: Phys. Rev. D 51, 6677 (1995)
22. Sakai, J., Kawata, T.: J. Phys. Soc. Jpn. 49, 747 (1980)
23. Sharif, M., Sheikh, U.: Gen. Relativ. Gravit. 39, 1437 (2007)
24. Townsend, P.K.: arXiv:gr-qc/9707012
25. Padmanabhan, T.: Phys. Rep. 406, 49 (2005)
26. Robinson, S.P., Wilczek, F.: Phys. Rev. Lett. 95, 011303 (2005)
27. Iso, S., Umetsu, H., Wilczek, F.: Phys. Rev. Lett. 96, 151302 (2006)
28. Banerjee, R., Kulkarni, S.: Phys. Rev. D 77, 024018 (2008)
29. Banerjee, R., Kulkarni, S.: Phys. Lett. B 659, 827 (2008)
30. Lee, K., Nair, V.P., Weinberg, E.J.: Phys. Rev. Lett. 68, 1100 (1992)
31. Dirac, P.A.M.: Proc. R. Soc. Lond. A 133, 60 (1931)
32. Dirac, P.A.M.: Phys. Rev. 74, 817 (1948)
33. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)
34. Hawking, S.W., Horowitz, G., Ross, S.: Phys. Rev. D 51, 4302 (1995)
35. Teitelboim, C.: Phys. Rev. D 51, 4315 (1995). Erratum: Phys. Rev. D 52, 6201 (1995)
36. Gibbons, G., Hull, C.: Phys. Lett. B 109, 190 (1982)
37. Kallosh, R., Linde, A., Ortn, T., Peet, A.: Phys. Rev. D 46, 5278 (1992)
38. Kallosh, R.: Phys. Lett. B 282, 80 (1992)
39. Horowitz, G., Tseytlin, A.: Phys. Rev. Lett. 73, 3351 (1994)
40. Zhang, J.Y., Fan, J.H.: Phys. Lett. B 648, 13 (2007)
41. Li, Q., Han, Y.-W.: Int. J. Theor. Phys. 47, 3248 (2008)
42. Som, M.M., Santos, N.O., da F. Teixeira, A.F.: Phys. Rev. D 16, 2417 (1977)

http://arxiv.org/abs/arXiv:gr-qc/9707012


Int J Theor Phys (2009) 48: 3007–3029 3029

43. Hartle, J.B., Hawking, S.W.: Phys. Rev. D 13, 2188 (1976)
44. Harvey, J.A., Strominger, A.: Quantum Aspects of Black Holes (1992). hep-th/9209055
45. Mackay, T.G., Lakhtakia, A., Setiawan, S.: New J. Phys. 7, 171 (2005)
46. Hajicek, P.: Nucl. Phys. B 185, 254 (1981)
47. Gibbons, G.W.: In: Breitenlohner, P., Durr, H.P. (eds.) Proceedings of the Heisenberg Symposium.

Springer, Berlin (1982)
48. Aichelberg, P.C., Guven, R.: Phys. Rev. D 24, 2066 (1981)
49. Aichelberg, P.C., Guven, R.: Phys. Rev. D 27, 456 (1983)
50. Aichelberg, P.C., Guven, R.: Phys. Rev. Lett. 51, 1613 (1983)
51. Das, A., Freedman, D.Z.: Nucl. Phys. B 120, 221 (1977)
52. Fradkin, E.S., Vasiliev, M.A.: Lebedev Institute. Preprint (1976), No. 197

http://arxiv.org/abs/hep-th/9209055

	Dispersion Relations for Cold Plasmas Around Reissner-Nordström Black Holes
	Abstract
	Introduction
	3+1 Formulation of GRMHD Equations Around RN Black Holes
	Cold Plasma in Rotating Magnetized Background
	Numerical Solution Modes

	Cold Plasma in Rotating Non-magnetized Background
	Cold Plasma in Non-rotating Background
	Concluding Remarks
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


